第二百一十四章 纳米科技
推荐阅读:
妖妖小说网 www.yaotxt.com,最快更新重生之异界入世修行最新章节!
ps:纳米技术(logy)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术是许多如生物、物理、化学等科学领域在技术上的次级分类。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可能可以有许多重要的应用,也可以制造许多有趣的材质。
纳米技术
纳米技术(logy)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术是许多如生物、物理、化学等科学领域在技术上的次级分类。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可能可以有许多重要的应用。也可以制造许多有趣的材质。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。
一﹑概念分类
从迄今为止的研究来看,关于纳米技术分为三种概念:
1﹑分子纳米技术
第一种。是一九八六年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。
2﹑极限的微加工技术
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的‘加工‘来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为。如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄。这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
3﹑纳米生物技术
三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。dna分子计算机、细胞生物计算机的开发。成为纳米生物技术的重要内容。
﹙1﹚加工技术
纳米级加工的含意是达到纳米级精度的加工技术。
由于原于间的距离为0.1一,纳米加工的实质就是要切断原子间的结合,实现原子或分子的去除,切断原子间结合所需要的能量,必然要求超过该物质的原子间结合能,即所播的能t密度是很大的。用传统的切削、磨削加工方法进行纳米级加工就相当困难了。截至2008年纳米加工有了很大的突破,如电子束光刻(uga技术)加工超大规模集成电路时,可实现0.1μm线宽的加工:离子刻蚀可实现微米级和纳米级表层材料的去除:扫描隧道显微技术可实现单个原子的去除、扭迁、增添和原子的重组。
﹙2﹚组装技术
由于在纳米尺度下刻蚀技术已达到极限,组装技术将成为纳米科技的重要手段。受到人们很大的重视。
纳米组装技术就是通过机械、物理、化学或生物的方法,把原子、分子或者分子聚集体进行组装,形成有功能的结构单元。组装技术包括分子有序组装技术。扫描探针原子、分子搬迁技术以及生物组装技术。分子有序组装是通过分子之间的物理或化学相互作用,形成有序的二维或三维分子体系。现在,分子有序组装技术及其应用研究方面取得的最新进展主要是lb膜研究及有关特性的发现。生物大分子走向识别组装。蛋白质、核酸等生物活性大分子的组装要求商密度定取向,这对于制备高性能生物微感膜、发展生物分子器件,以及研究生物大分子之间相互作用是十分重要的。在进行lgg归生物大分子的组装过程中,首次利用抗体活性片断的识别功能进行活性生物大分子的组装。这一重要的进展使得生物分子的定向组装产生了新的突破。
二﹑粒子制备
纳米粒子的制备方法很多。可分为物理方法和化学方法。
﹙一﹚物理方法
1﹑真空冷授法:
用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、位度可控。但技术设备要求高。
2﹑纳米技术应用——计算机磁盘
﹙1﹚物理粉碎法:
透过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产晶纯度低,顺粒分布不均匀。
﹙2﹚机械球磨法:
采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
﹙二﹚化学方法
1﹑气相沉积法:
利用金属化合物蒸汽的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。
2﹑沉淀法:
把沉淀剂加人到盐溶液中反应后,将沉淀热处理得到纳米材料.其特点简单易行,但纯度低,颗粒半径大,适合制备载化物。
3﹑水热合成法:
高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、拉度易控制。
4﹑溶胶凝胶法:
金属化合物经溶液、溶胶、凝胶而固化,再经低沮热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和11一vi族化合物的制备。
5﹑徽乳液法:
两互不相溶的溶剂在表面活性剂的作用下形成乳液,在徽泡中经成核,聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和接口性好,11一vi族半导体纳米粒子多用此法制备。
﹙三﹚材料合成
自一九九一年r等人率先制得纳米材料以来,经过十年的发展纳米材料有了长足的进步。如今纳米材料种类较多,按其材质分有:金属材料、纳米陶瓷材料、纳米半导体材料、纳米复合材料、纳米聚合材料等等。纳米材料是超徽粒材料,被称为“二十一世纪新材料”,具有许多特异性能。
例如用纳米级金属微粉烧结成的材料,强度和硬度大大高于原来的金属,纳米金属居然由导电体变成绝缘体。一般的陶瓷强度低并且很脆。但纳米级微粉烧结成的陶瓷不但强度高并且有良好的韧性。纳米材料的熔点会随超细粉的直径的减小而降低。例如金的熔点为1064c,但10nm的金粉熔点降低到的金粉熔点降低到830c,因而烧结温度可以大大降低。纳米陶瓷的烧结温度大大低于原来的陶瓷。纳米级的催化剂加入汽油中。可提高内燃机的效率。
加人固体燃料可使火箭的速度加快。药物制成纳米微粉。可以注射到血管内顺利进入微血管。
﹙四﹚材料检测
各种材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异。而正是这极薄的表面材料在康擦磨损、物理、化学、机械行为中起着主导作用。反映在现在“信息时代”的新型“智能型”材料的出现,如计算机磁盘、光盘等,要求表层小但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。纳米级表层物理力学性能的检测方法主要是表层微力学探针检侧法,它是用纳米压痕的原理检测其力学性能的.其基本原理是利用金刚石针尖用极小的力在试件表面压出纳米级或微米级压痕,根据压痕的大小测出试件表层的显徽力学性能,即连续记录探针针尖加载逐步压人和卸载逐步退出试件表层的全过程的压痕深度变化。因其中包含试件表层的弹*形,塑性变形、姗变、变形速率等多种信息,通过这些信息测出表层材料的多项力学性能。(未完待续)
ps:纳米技术(logy)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术是许多如生物、物理、化学等科学领域在技术上的次级分类。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可能可以有许多重要的应用,也可以制造许多有趣的材质。
纳米技术
纳米技术(logy)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术是许多如生物、物理、化学等科学领域在技术上的次级分类。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可能可以有许多重要的应用。也可以制造许多有趣的材质。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。
一﹑概念分类
从迄今为止的研究来看,关于纳米技术分为三种概念:
1﹑分子纳米技术
第一种。是一九八六年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。
2﹑极限的微加工技术
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的‘加工‘来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为。如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄。这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
3﹑纳米生物技术
三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。dna分子计算机、细胞生物计算机的开发。成为纳米生物技术的重要内容。
﹙1﹚加工技术
纳米级加工的含意是达到纳米级精度的加工技术。
由于原于间的距离为0.1一,纳米加工的实质就是要切断原子间的结合,实现原子或分子的去除,切断原子间结合所需要的能量,必然要求超过该物质的原子间结合能,即所播的能t密度是很大的。用传统的切削、磨削加工方法进行纳米级加工就相当困难了。截至2008年纳米加工有了很大的突破,如电子束光刻(uga技术)加工超大规模集成电路时,可实现0.1μm线宽的加工:离子刻蚀可实现微米级和纳米级表层材料的去除:扫描隧道显微技术可实现单个原子的去除、扭迁、增添和原子的重组。
﹙2﹚组装技术
由于在纳米尺度下刻蚀技术已达到极限,组装技术将成为纳米科技的重要手段。受到人们很大的重视。
纳米组装技术就是通过机械、物理、化学或生物的方法,把原子、分子或者分子聚集体进行组装,形成有功能的结构单元。组装技术包括分子有序组装技术。扫描探针原子、分子搬迁技术以及生物组装技术。分子有序组装是通过分子之间的物理或化学相互作用,形成有序的二维或三维分子体系。现在,分子有序组装技术及其应用研究方面取得的最新进展主要是lb膜研究及有关特性的发现。生物大分子走向识别组装。蛋白质、核酸等生物活性大分子的组装要求商密度定取向,这对于制备高性能生物微感膜、发展生物分子器件,以及研究生物大分子之间相互作用是十分重要的。在进行lgg归生物大分子的组装过程中,首次利用抗体活性片断的识别功能进行活性生物大分子的组装。这一重要的进展使得生物分子的定向组装产生了新的突破。
二﹑粒子制备
纳米粒子的制备方法很多。可分为物理方法和化学方法。
﹙一﹚物理方法
1﹑真空冷授法:
用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、位度可控。但技术设备要求高。
2﹑纳米技术应用——计算机磁盘
﹙1﹚物理粉碎法:
透过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产晶纯度低,顺粒分布不均匀。
﹙2﹚机械球磨法:
采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
﹙二﹚化学方法
1﹑气相沉积法:
利用金属化合物蒸汽的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。
2﹑沉淀法:
把沉淀剂加人到盐溶液中反应后,将沉淀热处理得到纳米材料.其特点简单易行,但纯度低,颗粒半径大,适合制备载化物。
3﹑水热合成法:
高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、拉度易控制。
4﹑溶胶凝胶法:
金属化合物经溶液、溶胶、凝胶而固化,再经低沮热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和11一vi族化合物的制备。
5﹑徽乳液法:
两互不相溶的溶剂在表面活性剂的作用下形成乳液,在徽泡中经成核,聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和接口性好,11一vi族半导体纳米粒子多用此法制备。
﹙三﹚材料合成
自一九九一年r等人率先制得纳米材料以来,经过十年的发展纳米材料有了长足的进步。如今纳米材料种类较多,按其材质分有:金属材料、纳米陶瓷材料、纳米半导体材料、纳米复合材料、纳米聚合材料等等。纳米材料是超徽粒材料,被称为“二十一世纪新材料”,具有许多特异性能。
例如用纳米级金属微粉烧结成的材料,强度和硬度大大高于原来的金属,纳米金属居然由导电体变成绝缘体。一般的陶瓷强度低并且很脆。但纳米级微粉烧结成的陶瓷不但强度高并且有良好的韧性。纳米材料的熔点会随超细粉的直径的减小而降低。例如金的熔点为1064c,但10nm的金粉熔点降低到的金粉熔点降低到830c,因而烧结温度可以大大降低。纳米陶瓷的烧结温度大大低于原来的陶瓷。纳米级的催化剂加入汽油中。可提高内燃机的效率。
加人固体燃料可使火箭的速度加快。药物制成纳米微粉。可以注射到血管内顺利进入微血管。
﹙四﹚材料检测
各种材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异。而正是这极薄的表面材料在康擦磨损、物理、化学、机械行为中起着主导作用。反映在现在“信息时代”的新型“智能型”材料的出现,如计算机磁盘、光盘等,要求表层小但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。纳米级表层物理力学性能的检测方法主要是表层微力学探针检侧法,它是用纳米压痕的原理检测其力学性能的.其基本原理是利用金刚石针尖用极小的力在试件表面压出纳米级或微米级压痕,根据压痕的大小测出试件表层的显徽力学性能,即连续记录探针针尖加载逐步压人和卸载逐步退出试件表层的全过程的压痕深度变化。因其中包含试件表层的弹*形,塑性变形、姗变、变形速率等多种信息,通过这些信息测出表层材料的多项力学性能。(未完待续)